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ABSTRACT

The question of steady state populations produced by a balance
of heavy-particle collisional ionization against its inverse is
considered. A hybrid-Saha approximation is Aerived which is wuseful
in estimating the populations of excited states with high quantum
numbers expected in plasmas recombining at high neutral pressures with

an electron temperatures in excess of the heavy-particle temperature.
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INTRODUCTION

Recently Bates and Kharel' discussed a type of electron-ion
recombination which could occur in high pressure plasmas in which

the primary capture occurs according to the scheme

oJa
X' +e+ X > X(p)+X, (1)

£
where X (P denotes the pth excited state of the X atom. The recombination
is considered to be stabilized by subsequent superelastic collisions

with heavy particles

X* (p) + X » X% (q) + X P>q, (2)

as well as by spontaneous radiation. Subsequently Collinsz' suggested
that such processes might be considerably more important in laboratory
plasmas in the Torr pressure range than had been previously suspected.
Further it was suggested that contributions to the X¥* population from
such a process could conceivably explain the serious discrepancies
between the intensity of radiation from the X* population observed in
certain experiments and that predicted by the otherwise successful
theory of collisional-radiative recombination.s' Although the method

used by Bates and Khare to calculate the recombination rates neither



depended on nor yielded excited state populations one can immediately
infer that in the limit of high quantum numbers the excited state

populations would be given by the Saha equation

g 2
+ n ( h )3/2 £Un/KTg,

n e +g 2mmKTg

(3)

where: Nn’ N+, and Ne are the populations of the nth bound level, ion,
and free electrons, respectively, = g+, and g, are the degeneracies
of the nth bound level, ion, and free electron, respectively, Un is the
ionization potential of the n-th bound level, Tg is the heavy particle
temperature, m is the electron mass and other symbols have conventional
meanings.

However, in many cases of possible interest such as early afterglows
or active discharges the experimental plasma is non-thermalized, the
electrons possessing a somewhat higher temperature than that of the
heavy particles. This paper concerns the calculation of the excited
state populations for recombination of the Bates-Khare type in the
limiting case of a balance between collision-induced ionization and

recombination i.e.

dfe]

5T =0, ()

but without the restriction that the electron temperature equal the
gas temperature. Such a limiting case should provide an accurate

approximation to excited state population in high pressure recombining



plasmas for sufficiently high quantum numbers.
MATHEMATICAL METHOD

In the course of the calculations only recombination and ionization
corresponding to (1) and its inverse were considered. In this case,
referring to Figure 1 for identification of the energies involved, the
ionization rate from the nth bound level of X% to the differential level

located in the continuum between E and E + dE can be written
o0
dRi = NndEfA Vrel O s (a,e) dN(e), (5)

where Nn represents the population of the nth bound level, Vrel the
relative velocity between X and X%, Tex (A,e) the cross section per
unit energy for transfer of energy between A and A+dE to X* from an X
atom having kinetic energy of e/2 relative to the center of mass of X¥®
and X, and dN(e) represents the distribution function for X as a
function of e. Similarly the recombination rate from the differential
state between E and E+dE into the nth bound state of X¥* can be written

o

_ aN(E)
dRp = dEf Vel % (A,e) aN(e), (6)

[¢]

where now US(A,e) is the cross section for the transfer of energy A from
the (X+ + e) differential state to an X atom having kinetic energy of

. + . .
e/2 relative to the center of mass of X and X, Vrel is the appropriate



dN(E)

relative velocity, and 3T dE together represents the population of

the differential state, N(E) being essentially the distribution function

of free electrons.

In the absence of the restriction of equality of gas and electron

temperatures we cannot require
dRi = dRy (7
for this would imply equilibrum among the free-free transitions at a

temperature charisteristic of the heavy particle temperature. The

weaker requirement

(8)

5
B

E=0 E=0

is sufficient to produce a steady state balance between ionization from
and recombination into to nth bound level. Before substituting (5) and
(6) into (8) it is expedient to evaluate several of the‘terms in (6).
In particular the principle of detailed balancingu' serves to relate
o to Ooy 288 follows:
A, En

_aS(A,e) =0, (4, ethd) dE (1 + g) 3@ (9)

where g, is the statistical weight of the nth bound level and dg(E)

the statistical weight of the "continuum level' between E and E + dE.



. . . .6.
This ratio is found from elementary quantum mechanics to be 5

g, 1 .+ & g /2 y2 8/2 -1 (10)
ey - 2V o @ G [ElT
e

where N' is the X' ion concentration, g, g+, g, are the statistical
welights of the nth bound state, X+ ion, and the free electron, and other
constants have conventional meanings. Assuming the free electrons to
be approximately described by the Maxwell-Boltzmann distribution

characteristic of a higher electron temperature, Te, gives:

-1/2
dE) . 2 N, E__ 570 ¢ “E/KTe (11)
"% (xr)

Combining eq (9), (10) and (6) and substituting together with (5)

into (8) gives:

Nnj dE ]Vrelcex(A,e)dN(e) =
o A (12)
[ee] _E fee]
g 2 3/2] = f
+ - °n h KTg A
N Ne — (2TTmKT ) de ¢ ¢ VreloeX(A,e+A)(l+e)dN(e)
g e, e
[o] [o]

Making the substitution on the right



e+ A=c¢, (13)

and further substituting a Maxwellian form for the distribution
function of the X atoms gives with algebraic manipulation an implicit

equation for the populations Nn as follows:

dE . N+N €n ( h2 )3/2 2Un/KTg . (l/KTg - l/KTe)E .
n e + 2mmKT
g e
e
0
(1)
~[» Vel %ex (Un + E,e) dN(e) = 0,
U +E
n

where all terms are as previously identified and Tg represents the
heavy particle temperature.

If a population decrement fn is defined by the relation

+ By h2 3/2 Un/KTg
Nn =N Ne + (2ﬂmKT ) . fﬁ ? (15)
g e
: e
then (14) can be simplified to give fn in terms of the excitation
cross sections ¢ as follows:
-1
[o0] o]
£ = f g *=0) (y a)an f K(U_,4)dA , (16)
n n n
U U

n n



where

=) , (17)

and K(Un,A) is the rate coefficient per unit energy for the ionization
of the nth level with the emission of an electron of energy between

Eand E + dE, i.e.

[oe]

K(Un,A) = fvrel Oy (A,e) dN(e) . (18)
A



RESULTS

To solve for fn exactly requires detailed knowledge, which is
generally unavailable,of the ionization rate coefficient as a function
of the ejected electron energy for the inverse of the process described
in eq. (1). Classically, however, one would expect the difficulty of
transferring large amounts of heavy particle energy, e, to the ejected
electron would require K(Un,A) to be a rapidly decreasing function of E.
Further since K(Un,A) is not a function of Te, for a particular quantum
level, n, an electron temperature, Tmax’ sufficiently close to Tg can

always be found such that z“(E’Un)

= 1 over the range of E for which
K(Un,A) contributes significantly to the integrals in (16). Consequently
for this particular n and electron temperature less than Tmax’ fn is
approximately unity and the excited state population is given by eq. (15)
with fn = 1.

The question now rvemains as to whether or not Tmax is sufficiently
larger than Tg to permit the simplified form of (15) wi’ch'fn = 1 to be
used in the description of real plasmas of interest.

Figure 2 compares the results of substituting into eq. (15) the
approximation fn = 1 with the explicit calculations of fn using the
classical ionization rate coefficients K(Un,A), given by Bates and Khare
for helium., In fhe particular case presented Tg = 300°K and the electron

temperature is 1200°K. Lower electron temperatures were found to give

even better agreement while higher electron temperatures gave agreement

10
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almost as good as would be expected from the fact that at a gas
temperature of 300°K, o varies from zero to 38.7 ev-l as Te varies
from 300°K to infinity, whereas the example presented for Te = 1200°K
corresponds to an a of 29.0 ev—l. Higher values of gas temperature
were examined up to Tg = 1000°K and agreement was found to improve

with increasing Tg in all cases in which Tex> T .

CONCLUSTIONS
Although little experimental evidence is available on the
detailed form of the ionization rate coefficient, K(Ui,A), as a function
of the ejected electron energy, E; under the not particularly restrictive

conditions discussed above it appears that the hybrid-Saha equation

3/2 Un/KTg
) 2 (19)

is an approximation, sufficiently accurate for most purposes, of the
excited state populations produced by an equilibrium between process
(1) and its inverse under conditions in which the electron temperature

is greater than the gas temperature.
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Figure 1:

Figure 2:

CAPTIONS

Schematic representation of the variables A, Un’ E, and
dE appearing in text.

A graph of rationalized population per state of excited
helium levels as a function of principal quantum number
and ionization energy. The solid curve represents values
obtained from the hybrid-Saha approximation, eq. (19).
Points represent values obtained from eq (15) showing the
results of including the explicit value of fn.

T = 300°K, T = 1200°K
g e
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